Computer Graphics

5 - Affine Transformation Matrix, Rendering Pipeline, Viewing

Yoonsang Lee Spring 2022

Topics Covered

- Coordinate System & Reference Frame
- Affine Transformation Matrix
- Rendering Pipeline & Vertex Processing
- Modeling transformation
- Viewing transformation

Coordinate System & Reference Frame

- Coordinate system
 - A system which uses one or more numbers, or coordinates, to uniquely determine the position of points.
- Reference frame
 - Abstract coordinate system + physical reference points (to uniquely fix the coordinate system).

Cartesian (X,Y,Z components) coordinate system 0 (C.S. 0)

Oylindrical (R,q,Z components) coordinate system 1 (C.S. 1)

Coordinate System & Reference Frame

- Two terms are slightly different:
 - Coordinate system is a mathematical concept, about a choice of "language" used to describe observations.
 - Reference frame is a physical concept related to state of motion.
 - You can think the coordinate system determines the way one describes/observes the motion in each reference frame.
- But these two terms are often mixed.

Global & Local Coordinate System(or Frame)

- Global coordinate system (or Global frame)
 - A coordinate system(or frame) attached to the **world.**
 - A.k.a. world coordinate system, fixed coordinate system
- Local coordinate system (or Local frame)

- A coordinate system(or frame) attached to a moving object.

Affine Transformation Matrix

Meanings of Affine Transformation Matrix

• The meaning of the same affine transformation matrix can be described from different perspectives.

1) Affine Transformation Matrix transforms a Geometry w.r.t. Global Frame

(w.r.t. the global frame)

Review: Affine Frame

- An **affine frame** in 3D space is defined by three vectors and one point
 - Three vectors for x, y, z axes
 - One point for origin

Global Frame

- A global frame is usually represented by
 - Standard basis vectors for axes : $\hat{\mathbf{e}}_x, \hat{\mathbf{e}}_y, \hat{\mathbf{e}}_z$
 - Origin point : **0**

$$\hat{\mathbf{e}}_{y} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^{T}$$

$$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^{T} = \mathbf{0} \qquad \hat{\mathbf{e}}_{x} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{T}$$

$$\hat{\mathbf{e}}_{z} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^{T}$$

Let's transform a "global frame"

- Apply M to this "global frame", that is,
 - Multiply M with the x, y, z axis *vectors* and the origin *point* of the global frame:

	x axis vector									
ſ	m_{11}	m_{12}	m_{13}	u_x	[1]		m_{11}			
	m_{21}	m_{22}	m_{23}	u_y	0		m_{21}			
	m_{31}	m_{32}	m_{33}	u_z	0	_	m_{31}			
l	0	0	0	1	0		0			

z axis *vector*

m_{11}	m_{12}	m_{13}	u_x	$\begin{bmatrix} 0 \end{bmatrix}$	m_{13}
m_{21}	$m_{22} \ m_{32}$	m_{23}	u_y	0	 m_{23}
m_{31}		m_{33}	u_{z}	1	 m_{33}
0	0	0	1	0	0

origin *point*

y axis *vector*

$m_{11} m_{21}$	$m_{12} \ m_{22}$	$m_{13} \\ m_{23}$	$\begin{array}{c} u_x \\ u_y \end{array}$	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$	$\begin{bmatrix} u_x \\ u_y \end{bmatrix}$
$m_{31} \\ 0$	$m_{32} \\ 0$	$ \begin{array}{c} 23 \\ m_{33} \\ 0 \end{array} $	$\begin{array}{c} u_z \\ 1 \end{array}$	0	 u_z

 $\begin{bmatrix} m_{11} & m_{12} & m_{13} & u_x \\ m_{21} & m_{22} & m_{23} & u_y \\ m_{31} & m_{32} & m_{33} & u_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} m_{12} \\ m_{22} \\ m_{32} \\ 0 \end{bmatrix}$

2) Affine Transformation Matrix defines an Affine Frame w.r.t. Global Frame

Examples

3) Affine Transformation Matrix transforms a Point Represented in an Affine Frame to (the same) Point (but) Represented in Global Frame

3) Affine Transformation Matrix transforms a Point Represented in an Affine Frame to (the same) Point (but) Represented in Global Frame Because...

Quiz #1

- Go to <u>https://www.slido.com/</u>
- Join #cg-ys
- Click "Polls"
- Submit your answer in the following format:
 - Student ID: Your answer
 - e.g. 2017123456: 4)
- Note that you must submit all quiz answers in the above format to be checked for "attendance".

All these concepts works even if the starting frame is not global frame!

$\{0\}$ to $\{1\}$ $\hat{\mathbf{e}}_y$ $\hat{\mathbf{e}}_x$ M_1 1, 0) $\hat{\mathbf{e}}_z$ *{0}* (global frame) *{1}*

- 1) **M**₁ transforms a geometry (represented in *{0}*) w.r.t. *{0}*
- 2) **M**₁ defines an *{*1*}* w.r.t. *{*0*}*
- 3) M₁ transforms a point represented in {1} to the same point but represented in {0}
 - $p_a^{\{0\}} = M_1 p_a^{\{1\}}$

- 1) M₂ transforms a geometry (represented in {1}) w.r.t. {1}
- 2) M₂ defines an {2} w.r.t. {1}
- 3) M₂ transforms a point represented in {2} to the same point but represented in {1}
 - $p_b^{\{1\}} = M_2 p_b^{\{2\}}$

- 1) M_1M_2 transforms a geometry (represented in $\{0\}$) w.r.t. $\{0\}$
- 2) **M**₁**M**₂ defines an *{*2*}* w.r.t. *{*0*}*
- 3) M₁M₂ transforms a point represented in {2} to the same point but represented in {0}
 - $p_b^{\{1\}} = M_2 p_b^{\{2\}}, p_b^{\{0\}} = M_1 p_b^{\{1\}} = M_1 M_2 p_b^{\{2\}}$

• A conceptual model that describes what steps a graphics system needs to perform to render a 3D scene to a 2D image.

• Also known as graphics pipeline.

Vertex Processing

Set vertex positions

Transformed vertices

We have to somehow set the "camera" that is watching the "scene".

Vertex positions in 2D viewport

 $glVertex3fv(\mathbf{p}_1)$ $glVertex3fv(\mathbf{p}_2)$ $glVertex3fv(\mathbf{p}_3)$ glMultMatrixf(M^T)

glVertex3fv(p_1) glVertex3fv(p_2) glVertex3fv(p_3)

...or

glVertex3fv(**Mp**₁) glVertex3fv(**Mp**₂)

glVertex3fv(Mp₃)

Then what we have to do are...

- 2. Placing the "camera"
- 3. Selecting a "lens"
- 4. Displaying on a "cinema screen"

In Terms of CG Transformation,

- 1. Placing objects
- \rightarrow Modeling transformation
- 2. Placing the "camera"
- \rightarrow Viewing transformation
- 3. Selecting a "lens"
- \rightarrow Projection transformation
- 4. Displaying on a "cinema screen"
- \rightarrow Viewport transformation
- All these transformations just work by **matrix multiplications**!

Translate, scale, rotate, ... any affine transformations (What we've already covered in prev. lectures)

Modeling transformation

Modeling Transformation

Modeling Transformation

- Geometry would originally have been in the **object's local coordinates**.
- Transform into world coordinates is called the *modeling* matrix, M_m .
- Composite affine transformations
- (What we've covered so far!)

World space

Wheel object space

Quiz #2

- Go to <u>https://www.slido.com/</u>
- Join #cg-ys
- Click "Polls"
- Submit your answer in the following format:
 - Student ID: Your answer
 - e.g. 2017123456: 4)
- Note that you must submit all quiz answers in the above format to be checked for "attendance".

Viewing Transformation

Recall that...

- 1. Placing objects
- \rightarrow Modeling transformation
- 2. Placing the "camera"
 → Viewing transformation
- 3. Selecting a "lens"
- \rightarrow **Projection transformation**
- 4. Displaying on a "cinema screen"
- \rightarrow Viewport transformation

Viewing Transformation

• Transformation from world to view space is traditionally called the *viewing matrix*, M_v .

Viewing Transformation

- Placing the camera
- → How to set the camera's position & orientation?

- Expressing all object vertices from the camera's point of view
- → How to define the camera's coordinate system (frame)?

1. Setting Camera's Position & Orientation

- Many ways to do this
- I'd like to introduce an intuitive way using:
- Eye point
 - Position of the camera
- Look-at point
 - The target of the camera
- Up vector
 - Roughly defines which direction is *up*

2. Defining Camera's Coordinate System

- From the given **eye point**, **look-at point**, **up vector**, we can compute the **camera frame**.
- **u**, **v**, **w** are commonly used for camera coordinates axes instead of x, y, z.

- What we have to do is to define the coordinate system:
- Finding **u**, **v**, **w** vectors
- Finding the **origin** point

Given Eye point, Look-at point, Up vector,

Getting "w" axis vector

Getting "u" axis vector

Getting "v" axis vector

2) Affine Transformation Matrix defines an Affine Frame w.r.t. Global Frame

Thus, the Camera Frame is defined by

How can we get viewing matrix M_v from this camera frame?

• Recall the modeling transformation:

: The axis vectors and origin point of the **object's local** frame represented in the global frame

How can we get viewing matrix M_v from the camera frame?

• If we replace *object space* to *camera space*, what should be the transformation matrix?

How can we get viewing matrix M_v from the camera frame?

• If we replace *object space* to *camera space*, what should be the transformation matrix?

How can we get viewing matrix M_v from the camera frame?

• If we replace *object space* to *camera space*, what should be the transformation matrix?

: The axis vectors and origin point of the **camera frame represented in the global frame**

Viewing Transformation is the Opposite Direction

$$\mathbf{M}_{\mathbf{v}} = \begin{bmatrix} \mathbf{u}_{\mathbf{x}} & \mathbf{v}_{\mathbf{x}} & \mathbf{W}_{\mathbf{x}} & \mathbf{P}_{eyex} \\ \mathbf{u}_{\mathbf{y}} & \mathbf{v}_{\mathbf{y}} & \mathbf{W}_{\mathbf{y}} & \mathbf{P}_{eyey} \\ \mathbf{u}_{\mathbf{z}} & \mathbf{v}_{\mathbf{z}} & \mathbf{W}_{\mathbf{z}} & \mathbf{P}_{eyez} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} u_{x} & u_{y} & u_{z} & -\mathbf{u} \cdot \mathbf{p}_{eye} \\ v_{x} & v_{y} & v_{z} & -\mathbf{v} \cdot \mathbf{p}_{eye} \\ w_{x} & w_{y} & w_{z} & -\mathbf{w} \cdot \mathbf{p}_{eye} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

gluLookAt()

gluLookAt ($eye_x, eye_y, eye_z, at_x, at_y, at_z, up_x, up_y, up_z$) : creates a viewing matrix and right-multiplies the current transformation matrix by it

 $C \leftarrow CM_v$

[Practice] gluLookAt()

```
import glfw
from OpenGL.GL import *
from OpenGL.GLU import *
import numpy as np
qCamAnq = 0.
qCamHeight = .1
def render():
    # enable depth test (we'll see details later)
    glClear (GL COLOR BUFFER BIT | GL DEPTH BUFFER BIT)
    glEnable(GL DEPTH TEST)
    glLoadIdentity()
    # use orthogonal projection (we'll see details later)
    glOrtho(-1,1, -1,1, -1,1)
    # rotate "camera" position (right-multiply the current matrix by viewing
matrix)
    # try to change parameters
    gluLookAt(.1*np.sin(gCamAng),gCamHeight,.1*np.cos(gCamAng), 0,0,0, 0,1,0)
    drawFrame()
    glColor3ub(255, 255, 255)
    drawTriangle()
```

```
def drawFrame():
    glBegin(GL LINES)
    glColor3ub(255, 0, 0)
    glVertex3fv(np.array([0.,0.,0.]))
    glVertex3fv(np.array([1.,0.,0.]))
    qlColor3ub(0, 255, 0)
    glVertex3fv(np.array([0.,0.,0.]))
    glVertex3fv(np.array([0.,1.,0.]))
    glColor3ub(0, 0, 255)
    glVertex3fv(np.array([0.,0.,0]))
    glVertex3fv(np.array([0.,0.,1.]))
                                                    None, None)
    glEnd()
def drawTriangle():
    glBegin(GL TRIANGLES)
    glVertex3fv(np.array([.0,.5,0.]))
    glVertex3fv(np.array([.0,.0,0.]))
    glVertex3fv(np.array([.5,.0,0.]))
    glEnd()
def key callback (window, key, scancode, action,
mods):
    global gCamAng, gCamHeight
    if action==glfw.PRESS or action==glfw.REPEAT:
        if key==glfw.KEY 1:
            gCamAng += np.radians(-10)
        elif key==glfw.KEY 3:
            gCamAng += np.radians(10)
        elif key==glfw.KEY 2:
            gCamHeight += .1
        elif key==glfw.KEY W:
            gCamHeight += -.1
```

```
def main():
    if not glfw.init():
        return
    window =
glfw.create window(640,640,'gluLookAt()',
    if not window:
        glfw.terminate()
        return
    glfw.make context current(window)
    glfw.set key callback(window,
key callback)
```

while not

```
glfw.window should close (window):
        glfw.poll events()
        render()
        glfw.swap buffers(window)
```

```
glfw.terminate()
```

```
if name == " main ":
   main()
```

Moving Camera vs. Moving World

- Actually, these are two **equivalent operations**
- Translate camera by (1, 0, 2) = Translate world by (-1, 0, -2)
- Rotate camera by 60° about y == Rotate world by -60° about y

Moving Camera vs. Moving World

- Thus you can also use glRotate*() or glTranslate*() to manipulate the camera!
- Note that gluLookAt() is NOT the only way to manipulate the camera.
- The **default OpenGL camera** is:
- located at the **origin**
- looking in **negative z direction**
- its up direction is **positive y**

Modelview Matrix

• As we've just seen, moving camera & moving world are equivalent operations.

 That's why OpenGL combines a viewing matrix M_v and a modeling matrix M_m into a modelview matrix M=M_vM_m

Quiz #3

- Go to <u>https://www.slido.com/</u>
- Join #cg-ys
- Click "Polls"
- Submit your answer in the following format:
 - Student ID: Your answer
 - e.g. 2017123456: 4)
- Note that you must submit all quiz answers in the above format to be checked for "attendance".

Next Time

- Lab for this lecture (next Monday):
 - Lab assignment 5
- Next lecture:
 - 6 Projection, Mesh 1
- Class Assignment #1

 Due: 23:59, April 19, 2022
- Acknowledgement: Some materials come from the lecture slides of
 - Prof. Jinxiang Chai, Texas A&M Univ., http://faculty.cs.tamu.edu/jchai/csce441_2016spring/lectures.html
 - Prof. Karan Singh <u>http://www.dgp.toronto.edu/~karan/courses/418/</u>