Computer Graphics

5 - Affine Transformation Matrix, Rendering Pipeline, Viewing

Yoonsang Lee

Spring 2022

Topics Covered

- Coordinate System \& Reference Frame
- Affine Transformation Matrix
- Rendering Pipeline \& Vertex Processing
- Modeling transformation
- Viewing transformation

Coordinate System \& Reference Frame

- Coordinate system
- A system which uses one or more numbers, or coordinates, to uniquely determine the position of points.

Gartesian ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ components) coordinate system 0 (C.S. O)

Oylindrical ($\mathrm{R}, \mathrm{q}, \mathrm{Z}$ components) coordinate system 1 (C.S. 1)

- Reference frame
- Abstract coordinate system + physical reference points (to uniquely fix the coordinate system).

Coordinate System \& Reference Frame

- Two terms are slightly different:
- Coordinate system is a mathematical concept, about a choice of "language" used to describe observations.
- Reference frame is a physical concept related to state of motion.
- You can think the coordinate system determines the way one describes/observes the motion in each reference frame.
- But these two terms are often mixed.

Global \& Local Coordinate System(or Frame)

- Global coordinate system (or Global frame)
- A coordinate system(or frame) attached to the world.
- A.k.a. world coordinate system, fixed coordinate system
- Local coordinate system (or Local frame)
- A coordinate system(or frame) attached to a moving object.

https://commons.wikimedia.org/w iki/File:Euler2a.gif

Affine Transformation Matrix

Meanings of Affine Transformation Matrix

- The meaning of the same affine transformation matrix can be described from different perspectives.

1) Affine Transformation Matrix transforms a Geometry w.r.t. Global Frame

Review: Affine Frame

- An affine frame in 3D space is defined by three vectors and one point
- Three vectors for $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axes
- One point for origin

Global Frame

- A global frame is usually represented by
- Standard basis vectors for axes : $\hat{\mathbf{e}}_{x}, \hat{\mathbf{e}}_{y}, \hat{\mathbf{e}}_{z}$
- Origin point : 0

$$
\begin{gathered}
\hat{\mathbf{e}}_{y}=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]^{T} \\
{\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]^{T}=\mathbf{0}} \\
\hat{\mathbf{e}}_{z}=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]^{T}=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]^{T}
\end{gathered}
$$

Let's transform a 'global frame"

- Apply M to this "global frame", that is,
- Multiply M with the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axis vectors and the origin point of the global frame:
x axis vector
$\left[\begin{array}{cccc}m_{11} & m_{12} & m_{13} & u_{x} \\ m_{21} & m_{22} & m_{23} & u_{y} \\ m_{31} & m_{32} & m_{33} & u_{z} \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}1 \\ 0 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{c}m_{11} \\ m_{21} \\ m_{31} \\ 0\end{array}\right]$
z axis vector

$$
\left[\begin{array}{cccc}
m_{11} & m_{12} & m_{13} & u_{x} \\
m_{21} & m_{22} & m_{23} & u_{y} \\
m_{31} & m_{32} & m_{33} & u_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
m_{13} \\
m_{23} \\
m_{33} \\
0
\end{array}\right]
$$

y axis vector

$$
\left[\begin{array}{cccc}
m_{11} & m_{12} & m_{13} & u_{x} \\
m_{21} & m_{22} & m_{23} & u_{y} \\
m_{31} & m_{32} & m_{33} & u_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
m_{12} \\
m_{22} \\
m_{32} \\
0
\end{array}\right]
$$

origin point

$$
\left[\begin{array}{cccc}
m_{11} & m_{12} & m_{13} & u_{x} \\
m_{21} & m_{22} & m_{23} & u_{y} \\
m_{31} & m_{32} & m_{33} & u_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
u_{x} \\
u_{y} \\
u_{z} \\
1
\end{array}\right]
$$

2) Affine Transformation Matrix defines an Affine Frame w.r.t. Global Frame

Examples

3) Affine Transformation Matrix transforms a

 Point Represented in an Affine Frame to (the same) Point (but) Represented in Global Frame
3) Affine Transformation Matrix transforms a Point Represented in an Affine Frame to (the same) Point (but) Represented in Global Frame Because...

Quiz \#1

- Go to https://www.slido.com/
- Join \#cg-ys
- Click "Polls"
- Submit your answer in the following format:
- Student ID: Your answer
- e.g. 2017123456: 4)
- Note that you must submit all quiz answers in the above format to be checked for "attendance".

All these concepts works even if the starting frame is not global frame!

- 1) $\mathbf{M}_{\mathbf{1}}$ transforms a geometry (represented in $\{0\}$) w.r.t. $\{0\}$
- 2) $\mathbf{M}_{\mathbf{1}}$ defines an $\{\mathbf{1}\}$ w.r.t. $\{0\}$
- 3) \mathbf{M}_{1} transforms a point represented in $\{\mathbf{1}\}$ to the same point but represented in $\{0\}$
$-\mathbf{p a}^{\{0\}}=\mathbf{M}_{1} \mathbf{p a}^{\text {a }}{ }^{\{1\}}$

$\{1\}$ to $\{2\}$

- 1) $\mathbf{M}_{\mathbf{2}}$ transforms a geometry (represented in $\left.\{\mathbf{1}\}\right)$ w.r.t. $\{\mathbf{1}\}$
- 2) \mathbf{M}_{2} defines an $\{2\}$ w.r.t. $\{1\}$
- 3) \mathbf{M}_{2} transforms a point represented in $\{2\}$ to the same point but represented in \{1\}
$-\mathbf{p}_{b}{ }^{\{1\}}=\mathbf{M}_{2} \mathbf{p}_{b}{ }^{\{2\}}$

$\{0\}$ to $\{2\}$

- 1) $\mathbf{M}_{\mathbf{1}} \mathbf{M}_{\mathbf{2}}$ transforms a geometry (represented in $\{\mathbf{0}\}$) w.r.t. $\{0\}$
- 2) $\mathbf{M}_{1} \mathbf{M}_{\mathbf{2}}$ defines an $\{2\}$ w.r.t. $\{0\}$
- 3) $\mathbf{M}_{1} \mathbf{M}_{2}$ transforms a point represented in $\{2\}$ to the same point but represented in $\{0\}$
$-\mathbf{p}_{b}{ }^{\{1\}}=\mathrm{M}_{2} \mathbf{p}_{\mathrm{b}}{ }^{\{2\}}, \mathbf{p}_{\mathrm{b}}{ }^{\{0\}}=\mathrm{M}_{1} \mathbf{p}_{\mathrm{b}}{ }^{\{1\}}=\mathrm{M}_{1} \mathrm{M}_{2} \mathbf{p}_{\mathrm{b}}{ }^{\{2\}}$

Rendering Pipeline

Rendering Pipeline

- A conceptual model that describes what steps a graphics system needs to perform to render a 3D scene to a 2D image.
- Also known as graphics pipeline.

Rendering Pipeline

Rendering Pipeline

Vertex Processing

Set vertex positions
glVertex3fv $\left(p_{1}\right)$
$\operatorname{glVertex} 3 f v\left(p_{2}\right)$
glVertex $3 f v\left(p_{3}\right)$
glVertex3fv $\left(p_{1}\right)$
$\operatorname{glVertex} 3 f v\left(p_{2}\right)$
glVertex $3 f v\left(p_{3}\right)$
glVertex3fv $\left(p_{1}\right)$
$\operatorname{glVertex3fv}\left(p_{2}\right)$
glVertex $3 f v\left(p_{3}\right)$

Vertex positions in
$2 D$ viewport

Transformed vertices
glMultMatrixf(\mathbf{M}^{T})
glVertex $3 f v\left(p_{1}\right)$
glVertex3fv $\left(p_{2}\right)$
glVertex3fv $\left(p_{3}\right)$
...or
glVertex3fv($\mathbf{M p}_{1}$)
glVertex3fv($\mathbf{M p}_{2}$)
glVertex $3 \mathrm{fv}\left(\mathrm{Mp}_{3}\right)$

set the "camera" that is watching the "scene".

Then what we have to do are...
2. Placing the "camera"
3. Selecting a "lens"
4. Displaying on a "cinema screen"

In Terms of CG Transformation,

- 1. Placing objects
\rightarrow Modeling transformation
- 2. Placing the "camera"
\rightarrow Viewing transformation
- 3. Selecting a "lens"
\rightarrow Projection transformation
- 4. Displaying on a "cinema screen"
\rightarrow Viewport transformation
- All these transformations just work by matrix multiplications!

Vertex Processing (Transformation Pipeline)

Object space

Translate, scale, rotate, ... any affine transformations (What we've already covered in prev. lectures)

World space

Vertex Processing (Transformation Pipeline)

Object space

Modeling transformation

World space

Vertex Processing (Transformation Pipeline)

Modeling Transformation

Modeling Transformation

- Geometry would originally have been in the object's local coordinates.
- Transform into world coordinates is called the modeling matrix, M_{m}.
- Composite affine transformations
- (What we've covered so far!)

Translate, rotate, scale, ... (Affine transformation)
\mathbf{M}_{m}

World space

Wheel object space

local coordinates

Cab object space

Container object space

Quiz \#2

- Go to https://www.slido.com/
- Join \#cg-ys
- Click "Polls"
- Submit your answer in the following format:
- Student ID: Your answer
- e.g. 2017123456: 4)
- Note that you must submit all quiz answers in the above format to be checked for "attendance".

Viewing Transformation

Recall that...

- 1. Placing objects
\rightarrow Modeling transformation
- 2. Placing the "camera"
\rightarrow Viewing transformation
- 3. Selecting a "lens"
\rightarrow Projection transformation
- 4. Displaying on a "cinema screen"
\rightarrow Viewport transformation

Viewing Transformation

Translate \& rotate (Rigid transformation)

$\mathbf{M v}_{\mathrm{v}}$

> View space
> (Camera space)

- Transformation from world to view space is traditionally called the viewing matrix, M_{v}.

Viewing Transformation

- Placing the camera
- \rightarrow How to set the camera's position \& orientation?
- Expressing all object vertices from the camera's point of view
- \rightarrow How to define the camera's coordinate system (frame)?

1. Setting Camera's Position \& Orientation

- Many ways to do this
- I'd like to introduce an intuitive way using:
- Eye point
- Position of the camera
- Look-at point
- The target of the camera

- Up vector
- Roughly defines which direction is up

2. Defining Camera's Coordinate System

- From the given eye point, look-at point, up vector, we can compute the camera frame.
- $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are commonly used for camera coordinates axes instead of $\mathrm{x}, \mathrm{y}, \mathrm{z}$.
(up direction)

- What we have to do is to define the coordinate system:
- Finding $\mathbf{u}, \mathbf{v}, \mathbf{w}$ vectors
- Finding the origin point

Given Eye point, Look-at point, Up vector,

Getting "w" axis vector

Getting "u" axis vector

Getting "v" axis vector

2) Affine Transformation Matrix defines an Affine Frame w.r.t. Global Frame

Thus, the Camera Frame is defined by

How can we get viewing matrix M_{v} from this camera frame?

- Recall the modeling transformation:

: The axis vectors and origin point of the object's local frame represented in the global frame

How can we get viewing matrix M_{v} from the camera frame?

- If we replace object space to camera space, what should be the transformation matrix?

How can we get viewing matrix M_{v} from the camera frame?

- If we replace object space to camera space, what should be the transformation matrix?

How can we get viewing matrix M_{v} from the camera frame?

- If we replace object space to camera space, what should be the transformation matrix?

World space
: The axis vectors and origin point of the camera frame represented in the global frame

Viewing Transformation is the Opposite Direction
 View space (Camera space)

 World space

gluLookAt()

gluLookAt (eye ${ }_{x}$, eye $_{y}$, eye $_{z}, \mathrm{at}_{x}, \mathrm{at}_{y}, \mathrm{at}_{z}$, up $_{x}$, up $_{y}$, up $_{z}$) : creates a viewing matrix and right-multiplies the current transformation matrix by it
$\mathrm{C} \leftarrow \mathrm{CM}_{\mathrm{v}}$

[Practice] gluLookAt()

```
import glfw
from OpenGL.GL import *
from OpenGL.GLU import *
import numpy as np
gCamAng = 0.
gCamHeight = .1
def render():
    # enable depth test (we'll see details later)
    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
    glEnable(GL_DEPTH_TEST)
    glLoadIdentity()
    # use orthogonal projection (we'll see details later)
    glOrtho(-1,1, -1,1, -1,1)
    # rotate "camera" position (right-multiply the current matrix by viewing
matrix)
    # try to change parameters
    gluLookAt(.1*np.sin(gCamAng),gCamHeight,.1*np.cos(gCamAng) , 0,0,0, 0,1,0)
    drawFrame()
    glColor3ub(255, 255, 255)
    drawTriangle()
```

```
def drawFrame():
    glBegin(GL_LINES)
    glColor3ub(255, 0, 0)
    glVertex3fv(np.array([0.,0.,0.]))
    glVertex3fv(np.array([1.,0.,0.]))
    glColor3ub(0, 255, 0)
    glVertex3fv(np.array([0.,0.,0.]))
    glVertex3fv(np.array([0.,1.,0.]))
    glColor3ub(0, 0, 255)
    glVertex3fv(np.array([0.,0.,0]))
    glVertex3fv(np.array([0.,0.,1.]))
    glEnd()
def drawTriangle():
    glBegin(GL_TRIANGLES)
    glVertex3fv(np.array([.0,.5,0.]))
    glVertex3fv(np.array([.0,.0,0.]))
    glVertex3fv(np.array([.5,.0,0.]))
    glEnd()
def key_callback(window, key, scancode, action,
mods):
    global gCamAng, gCamHeight
    if action==glfw.PRESS or action==glfw.REPEAT:
        if key==glfw.KEY 1:
            gCamAng += np.radians(-10)
        elif key==glfw.KEY_3:
            gCamAng += np.radians(10)
        elif key==glfw.KEY_2:
            gCamHeight += .1
        elif key==glfw.KEY_W:
            gCamHeight += -. 1
```

def main():
if not glfw.init():
return
window =
glfw.create_window(640,640,'gluLookAt()',
None, None)
if not window:
glfw.terminate()
return
glfw.make context current(window)
glfw.set_key_callback(window,
key_callback)

while not

glfw.window_should_close(window):
glfw.poll_events()
render()
glfw.swap_buffers(window)
glfw.terminate()
if __name___ == "__main__":
main()

Moving Camera vs. Moving World

- Actually, these are two equivalent operations
- Translate camera by $(1,0,2)==$ Translate world by $(-1,0,-2)$
- Rotate camera by 60° about $y==$ Rotate world by -60° about y

Moving Camera vs. Moving World

- Thus you can also use glRotate*() or glTranslate*() to manipulate the camera!
- Note that gluLookAt() is NOT the only way to manipulate the camera.
- The default OpenGL camera is:
- located at the origin
- looking in negative z direction
- its up direction is positive \mathbf{y}

Modelview Matrix

- As we've just seen, moving camera \& moving world are equivalent operations.
- That's why OpenGL combines a viewing matrix M_{v} and a modeling matrix M_{m} into a modelview matrix $M=M_{v} M_{m}$

Quiz \#3

- Go to https://www.slido.com/
- Join \#cg-ys
- Click "Polls"
- Submit your answer in the following format:
- Student ID: Your answer
- e.g. 2017123456: 4)
- Note that you must submit all quiz answers in the above format to be checked for "attendance".

Next Time

- Lab for this lecture (next Monday):
- Lab assignment 5
- Next lecture:
- 6 - Projection, Mesh 1
- Class Assignment \#1
- Due: 23:59, April 19, 2022
- Acknowledgement: Some materials come from the lecture slides of
- Prof. Jinxiang Chai, Texas A\&M Univ., http://faculty.cs.tamu.edu/jchai/csce441 2016spring/lectures.html
- Prof. Karan Singh http://www.dgp.toronto.edu/~karan/courses/418/

