
Computer Graphics

5 - Affine Transformation Matrix, Rendering

Pipeline, Viewing

Yoonsang Lee

Spring 2022

Topics Covered

• Coordinate System & Reference Frame

• Affine Transformation Matrix

• Rendering Pipeline & Vertex Processing

• Modeling transformation

• Viewing transformation

Coordinate System & Reference Frame

• Coordinate system

– A system which uses one or

more numbers, or coordinates,

to uniquely determine the

position of points.

• Reference frame

– Abstract coordinate system +

physical reference points (to

uniquely fix the coordinate

system).

Coordinate System & Reference Frame

• Two terms are slightly different:

– Coordinate system is a mathematical concept, about a

choice of “language” used to describe observations.

– Reference frame is a physical concept related to state of

motion.

– You can think the coordinate system determines the way

one describes/observes the motion in each reference

frame.

• But these two terms are often mixed.

Global & Local Coordinate System(or Frame)

• Global coordinate system (or Global frame)

– A coordinate system(or frame) attached to the world.

– A.k.a. world coordinate system, fixed coordinate system

• Local coordinate system (or Local frame)

– A coordinate system(or frame) attached to a moving object.

https://commons.wikimedia.org/w
iki/File:Euler2a.gif

Blue: global coordinates
Red: local coordinates

https://commons.wikimedia.org/wiki/File:Euler2a.gif

Affine Transformation Matrix

Meanings of Affine Transformation Matrix

• The meaning of the same affine transformation

matrix can be described from different

perspectives.

1) Affine Transformation Matrix transforms

a Geometry w.r.t. Global Frame

M =

{global frame}

Translate, rotate, scale, ...

Every vertex position (w.r.t. the global frame)

of the cube is transformed to another position

(w.r.t. the global frame)

Transformed geometry

Review: Affine Frame

• An affine frame in 3D space is defined by three

vectors and one point

– Three vectors for x, y, z axes

– One point for origin

Global Frame

• A global frame is usually represented by

– Standard basis vectors for axes :

– Origin point :

Let’s transform a "global frame"

• Apply M to this "global frame", that is,

– Multiply M with the x, y, z axis vectors and the origin

point of the global frame:

x axis vector y axis vector

z axis vector origin point

2) Affine Transformation Matrix defines an

Affine Frame w.r.t. Global Frame

M =

{frame 1}

(object's local frame)

{global frame}

→ M is the axis vectors and

origin point of a new frame

(represented in the global

frame)

x axis

vector

y axis

vector origin

point

z axis

vector

Examples

The object's local

frame is defined by:

The object's local

frame is defined by:

x axis

vector y axis

vector

origin

point
z axis

vector

of the local frame

represented in the global

frame

x axis

vector
y axis

vector

origin

point

z axis

vector

3) Affine Transformation Matrix transforms a

Point Represented in an Affine Frame to (the

same) Point (but) Represented in Global Frame

{0}

(global frame)

p{1}: Standing at {1},

observing p

p{1} is the position of p

w.r.t local frame

(frame {1})

p{0}=Mp{1}

Standing at {0}, observing p

p{0} is the position of p w.r.t. global frame (frame {0})

M = {1}

p{1} = (1, 1, 0)

p{0}=Mp{1}

3) Affine Transformation Matrix transforms a

Point Represented in an Affine Frame to (the

same) Point (but) Represented in Global Frame

Because...

{0}

(global frame)

Let’s say we

have the same

cube object

and its local

frame

coincident with

the global

frame

M =

Then, it’s a just story of

transforming a geometry!

p{1} = (1, 1, 0)

p{1} = (1, 1, 0)

{1}

Quiz #1

• Go to https://www.slido.com/

• Join #cg-ys

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the

above format to be checked for “attendance”.

https://www.slido.com/

All these concepts works even if the starting

frame is not global frame!

{2}

{0}

(global frame)

M1

M2

{1}

{0} to {1}

• 1) M1 transforms a geometry (represented in {0}) w.r.t. {0}

• 2) M1 defines an {1} w.r.t. {0}

• 3) M1 transforms a point represented in {1} to the same point but
represented in {0}

– pa
{0}=M1pa

{1}

{2}

{0}

(global frame)

M1

M2

{1}

pa
{1} = (1, 1, 0)

{1} to {2}

• 1) M2 transforms a geometry (represented in {1}) w.r.t. {1}

• 2) M2 defines an {2} w.r.t. {1}

• 3) M2 transforms a point represented in {2} to the same point but
represented in {1}

– pb
{1}=M2pb

{2}

{2}

{0}

(global frame)

M1

M2

{1}

pb
{2} = (1, 1, 0)

{0} to {2}

• 1) M1M2 transforms a geometry (represented in {0}) w.r.t. {0}

• 2) M1M2 defines an {2} w.r.t. {0}

• 3) M1M2 transforms a point represented in {2} to the same point but
represented in {0}

– pb
{1}=M2pb

{2}, pb
{0}=M1pb

{1}=M1M2pb
{2}

M1M2

{2}

{0}

(global frame)

M1

M2

{1}

pb
{2} = (1, 1, 0)

Rendering Pipeline

Rendering Pipeline

• A conceptual model that describes what steps a

graphics system needs to perform to render a 3D

scene to a 2D image.

• Also known as graphics pipeline.

Rendering Pipeline

vertex

processing
rasterization

fragment

processing

output merging

: performs a

sequence of vertex

transformations

: assembles

polygons & converts

each polygon into a

set of fragments

(pixels)

: determines

color of each

fragment with

light & texture

Rendering Pipeline

vertex

processing
rasterization

fragment

processing

output merging

→ We’ll see today & next lecture

What we’ve been done so far
: performs a

sequence of vertex

transformations

Vertex Processing

glVertex3fv(p1)

glVertex3fv(p2)

glVertex3fv(p3)

…or

glVertex3fv(Mp1)

glVertex3fv(Mp2)

glVertex3fv(Mp3)

glMultMatrixf(MT)

glVertex3fv(p1)

glVertex3fv(p2)

glVertex3fv(p3)

Set vertex

positions

Transformed

vertices

Vertex positions in

2D viewport

M ?
We have to somehow

set the “camera” that is

watching the “scene”.

Then what we have to do are…

2. Placing the “camera”

3. Selecting a “lens”

4. Displaying on a “cinema screen”

1. Placing objects

In Terms of CG Transformation,

• 1. Placing objects

→ Modeling transformation

• 2. Placing the “camera”

→ Viewing transformation

• 3. Selecting a “lens”

→ Projection transformation

• 4. Displaying on a “cinema screen”

→ Viewport transformation

• All these transformations just work by matrix multiplications!

Vertex Processing (Transformation Pipeline)

World space

Object space

Translate, scale, rotate, ... any affine transformations

(What we’ve already covered in prev. lectures)

local coordinate system

global coordinate system

Vertex Processing (Transformation Pipeline)

World space

Object space

Modeling transformation

local coordinate system

global coordinate system

Vertex Processing (Transformation Pipeline)

World space

Object space
View space

(Camera space)

Placing the “camera”

global coordinate system

camera

coordinate

system

Vertex Processing (Transformation Pipeline)

World space

Object space
View space

(Camera space)

Viewing transformation

global coordinate system

camera

coordinate

system

Vertex Processing (Transformation Pipeline)

World space

Object space
View space

(Camera space)

Selecting a “lens”

Canonical view volume

y

xz

(1,1,1)

(-1,-1,-1)

normalized device

coordinate system

(NDC)

camera

coordinate

system

Vertex Processing (Transformation Pipeline)

World space

Object space
View space

(Camera space)

Projection transformation

Canonical view volume

y

xz

(1,1,1)

(-1,-1,-1)

normalized device

coordinate system

(NDC)

Vertex Processing (Transformation Pipeline)

World space

Object space
View space

(Camera space)

Screen space

(Image space)

Displaying on a

“cinema screen”

Canonical view volume

y

xz

(1,1,1)

(-1,-1,-1)

normalized device

coordinate system

(NDC)

screen

coordinate

system

Vertex Processing (Transformation Pipeline)

World space

Object space
View space

(Camera space)

Screen space

(Image space)

Viewport transformation

Canonical view volume

y

xz

(1,1,1)

(-1,-1,-1)

screen

coordinate

system

normalized device

coordinate system

(NDC)

Vertex Processing (Transformation Pipeline)

View space

(Camera space)

World space

Object space
Screen space

(Image space)

Projection

transformation

Viewport

transformation

Viewing

transformation

Modeling

transformation

Canonical view volume

y

xz

(1,1,1)

(-1,-1,-1)

Vertex Processing (Transformation Pipeline)

View space

(Camera space)

World space

Object space
Screen space

(Image space)

Projection

transformation

Viewport

transformation

Viewing

transformation

Modeling

transformation

Canonical view volume

y

xz

(1,1,1)

(-1,-1,-1)

All these transformations just work

by matrix multiplications!

Vertex Processing (Transformation Pipeline)

View space

(Camera space)

World space

Object space
Screen space

(Image space)

Projection

transformation

: Mpj

Viewport

transformation

: Mvp

Viewing

transformation

: Mv

Modeling

transformation

: Mm

po ps

Canonical view volume

y

xz

(1,1,1)

(-1,-1,-1)

ps = Mvp Mpj Mv Mm po

Modeling Transformation

View space

(Camera space)

World space

Object space
Screen space

(Image space)

Modeling

transformation

: Mm

po

pw

Canonical view volume

y

xz

(1,1,1)

(-1,-1,-1)

pw = Mm po

Modeling Transformation

• Geometry would originally have been in the object’s local
coordinates.

• Transform into world coordinates is called the modeling
matrix, Mm .

• Composite affine transformations

• (What we’ve covered so far!)

World space

Object space
Translate, rotate, scale, ...

(Affine transformation)po

pw

Mm

Mm
wheel

Mm
cab

Mm
container

Wheel object space

Cab object space

Container object space

World space
local coordinates

global coordinates

Quiz #2

• Go to https://www.slido.com/

• Join #cg-ys

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the

above format to be checked for “attendance”.

https://www.slido.com/

Viewing Transformation

View space

(Camera space)

World space

Object space
Screen space

(Image space)

Viewing

transformation

: Mv

pw

pv

Canonical view volume

(Normalized device coordinates, NDC)

y

xz

(1,1,1)

(-1,-1,-1)

pv = Mv pw

Recall that...

• 1. Placing objects

→ Modeling transformation

• 2. Placing the “camera”

→ Viewing transformation

• 3. Selecting a “lens”

→ Projection transformation

• 4. Displaying on a “cinema screen”

→ Viewport transformation

Viewing Transformation

• Transformation from world to view space is

traditionally called the viewing matrix, Mv .

View space

(Camera space)

World space

Translate & rotate (Rigid

transformation)

Mv

pw

pv

Viewing Transformation

• Placing the camera

• → How to set the camera’s position &

orientation?

• Expressing all object vertices from the camera's

point of view

• → How to define the camera’s coordinate

system (frame)?

1. Setting Camera’s Position & Orientation

• Many ways to do this

• I'd like to introduce an intuitive way
using:

• Eye point

– Position of the camera

• Look-at point

– The target of the camera

• Up vector

– Roughly defines which direction is up

=Look-at point

2. Defining Camera’s Coordinate System

• From the given eye point, look-at point, up vector, we can
compute the camera frame.

• u, v, w are commonly used for camera coordinates axes
instead of x, y, z.

• What we have to do is to

define the coordinate system:

• Finding u, v, w vectors

• Finding the origin pointu

v

w

origin

(backward direction)

(up direction)

(right direction)

Given Eye point, Look-at point, Up vector,

= origin of camera frame

: Look-at point

: Up vector

: Eye point

Getting “w” axis vector

magnitude(l2 norm) of a vector:

Getting “u” axis vector

cross-product

Getting “v” axis vector

2) Affine Transformation Matrix defines an

Affine Frame w.r.t. Global Frame

M =

Local frame

Global frame

: The axis vectors and origin

point of the object’s local

frame represented in the

global frame

x axis

vector

y axis

vector origin

point

z axis

vector

Thus, the Camera Frame is defined by

• Recall the modeling transformation:

How can we get viewing matrix Mv from

this camera frame?

World space
Object space

po

pw

Mm

x1
w

y1
w

z1
w

o1
w=

x1
w

vector

y1
w

vector

o1
w

point
z1

w

vector

: The axis vectors and origin point of the object’s local

frame represented in the global frame

How can we get viewing matrix Mv from the

camera frame?

• If we replace object space to camera space, what

should be the transformation matrix?

World space

pw

Mm

Object space

po

How can we get viewing matrix Mv from the

camera frame?

• If we replace object space to camera space, what

should be the transformation matrix?

View space

(Camera space)

pv

World space

pw

?

How can we get viewing matrix Mv from the

camera frame?

• If we replace object space to camera space, what

should be the transformation matrix?

View space

(Camera space)

pv

World space

pw

?

: The axis vectors and origin point of the camera

frame represented in the global frame

u

v
w

Peye

Viewing Transformation is the Opposite

Direction

-1

View space

(Camera space)

pv

World space

pw

?

u

v
w

PeyeMv

Mv =

gluLookAt()

gluLookAt (eyex,eyey,eyez,atx,aty,atz,upx, upy,upz)
: creates a viewing matrix and right-multiplies the current

transformation matrix by it

C ← CMv

[Practice] gluLookAt()
import glfw

from OpenGL.GL import *

from OpenGL.GLU import *

import numpy as np

gCamAng = 0.

gCamHeight = .1

def render():

enable depth test (we'll see details later)

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)

glEnable(GL_DEPTH_TEST)

glLoadIdentity()

use orthogonal projection (we'll see details later)

glOrtho(-1,1, -1,1, -1,1)

rotate "camera" position (right-multiply the current matrix by viewing

matrix)

try to change parameters

gluLookAt(.1*np.sin(gCamAng),gCamHeight,.1*np.cos(gCamAng), 0,0,0, 0,1,0)

drawFrame()

glColor3ub(255, 255, 255)

drawTriangle()

def drawFrame():

glBegin(GL_LINES)

glColor3ub(255, 0, 0)

glVertex3fv(np.array([0.,0.,0.]))

glVertex3fv(np.array([1.,0.,0.]))

glColor3ub(0, 255, 0)

glVertex3fv(np.array([0.,0.,0.]))

glVertex3fv(np.array([0.,1.,0.]))

glColor3ub(0, 0, 255)

glVertex3fv(np.array([0.,0.,0]))

glVertex3fv(np.array([0.,0.,1.]))

glEnd()

def drawTriangle():

glBegin(GL_TRIANGLES)

glVertex3fv(np.array([.0,.5,0.]))

glVertex3fv(np.array([.0,.0,0.]))

glVertex3fv(np.array([.5,.0,0.]))

glEnd()

def key_callback(window, key, scancode, action,

mods):

global gCamAng, gCamHeight

if action==glfw.PRESS or action==glfw.REPEAT:

if key==glfw.KEY_1:

gCamAng += np.radians(-10)

elif key==glfw.KEY_3:

gCamAng += np.radians(10)

elif key==glfw.KEY_2:

gCamHeight += .1

elif key==glfw.KEY_W:

gCamHeight += -.1

def main():

if not glfw.init():

return

window =

glfw.create_window(640,640,'gluLookAt()',

None,None)

if not window:

glfw.terminate()

return

glfw.make_context_current(window)

glfw.set_key_callback(window,

key_callback)

while not

glfw.window_should_close(window):

glfw.poll_events()

render()

glfw.swap_buffers(window)

glfw.terminate()

if __name__ == "__main__":

main()

Moving Camera vs. Moving World

• Actually, these are two equivalent operations

• Translate camera by (1, 0, 2) == Translate world by (-1, 0, -2)

• Rotate camera by 60° about y == Rotate world by -60° about y

Moving Camera vs. Moving World

• Thus you can also use glRotate*() or glTranslate*()
to manipulate the camera!

• Note that gluLookAt() is NOT the only way to
manipulate the camera.

• The default OpenGL camera is:

• located at the origin

• looking in negative z direction

• its up direction is positive y

Modelview Matrix

• As we’ve just seen, moving camera & moving

world are equivalent operations.

• That’s why OpenGL combines a viewing matrix Mv

and a modeling matrix Mm into a modelview matrix

M=MvMm

Quiz #3

• Go to https://www.slido.com/

• Join #cg-ys

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the

above format to be checked for “attendance”.

https://www.slido.com/

Next Time

• Lab for this lecture (next Monday):

– Lab assignment 5

• Next lecture:

– 6 - Projection, Mesh 1

• Class Assignment #1

– Due: 23:59, April 19, 2022

• Acknowledgement: Some materials come from the lecture slides of

– Prof. Jinxiang Chai, Texas A&M Univ., http://faculty.cs.tamu.edu/jchai/csce441_2016spring/lectures.html

– Prof. Karan Singh http://www.dgp.toronto.edu/~karan/courses/418/

http://faculty.cs.tamu.edu/jchai/csce441_2016spring/lectures.html
http://www.dgp.toronto.edu/~karan/courses/418/

